Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 469: 133861, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38430596

RESUMO

Microplastics have garnered global attention due to their potential ecological risks. Research shows micro/nano-plastics pollution has adverse effects on plant growth, development, and physiological characteristics. However, the mechanisms underlying these effects remain unclear. The study examined the effects of polystyrene micro/nano-plastics with varying sizes and concentrations on different physiological and biochemical markers of A. thaliana. The indicators assessed include seed viability, growth, chlorophyll content, accumulation of root reactive oxygen species, and root exudates. Using fluorescence labeling, we investigated the absorption and translocation processes of micro/nano-plastics in A. thaliana. We also performed transcriptomic analysis to better understand the particular mechanisms of micro/nano-plastics. It indicated that micro/nano-plastics had an adverse effect on seed germination, especially under high concentration and small particle size treatments. This effect diminished with prolonged exposure. High concentrations at 50 nm and 100 nm treatment groups significantly inhibited the growth. Conversely, low concentrations of 1000 nm had a promoting effect. Exposure to micro/nano-plastics potentially resulted in decreased chlorophyll content, the accumulation of H2O2 in roots, and stimulated root secretion of oxalic acid. Through transcriptomic analysis, the gene expression linked to micro/nano-plastic treatments of varying sizes enriched multiple metabolic pathways, impacting plant growth, development, environmental adaptation, metabolism, pigment synthesis, and stress response.


Assuntos
Arabidopsis , Poliestirenos , Poliestirenos/toxicidade , Microplásticos/toxicidade , Plásticos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Peróxido de Hidrogênio , Clorofila
2.
Mol Plant ; 16(11): 1773-1793, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37749887

RESUMO

The discovery of novel flavonoids and elucidation of their biosynthesis are fundamental to understanding their roles in plants and their benefits for human and animal health. Here, we report a new pathway for polymerization of a group of novel oligomeric flavonoids in plants. We engineered red cells for discovering genes of interest involved in the flavonoid pathway and identified a gene encoding a novel flavanol polymerase (FP) localized in the central vacuole. FP catalyzes the polymerization of flavanols, such as epicatechin and catechin, to produce yellowish dimers or oligomers. Structural elucidation shows that these compounds feature a novel oligomeric flaven-flavan (FF) skeleton linked by interflavan-flaven and interflaven bonds, distinguishing them from proanthocyanidins and dehydrodicatechins. Detailed chemical and physical characterizations further confirmed the novel FFs as flavonoids. Mechanistic investigations demonstrated that FP polymerizes flavan-3-ols and flav-2-en-3-ol carbocation, forming dimeric or oligomeric flaven-4→8-flavans, which we term "papanridins." Data from transgenic experiments, mutant analysis, metabolic profiling, and phylogenetic analyses show that the biosynthesis of papanridins is prevalent in cacao, grape, blueberry, corn, rice, Arabidopsis, and other species in the plant kingdom. In summary, our study discoveries a group of novel oligomeric flavonoids, namely papanridins, and reveals that a novel FP-mediated polymerization mechanism for the biosynthesis of papanridins in plants.


Assuntos
Catequina , Proantocianidinas , Animais , Humanos , Flavonoides/metabolismo , Filogenia , Proantocianidinas/análise , Proantocianidinas/química , Catequina/análise , Polifenóis
3.
Sci Total Environ ; 889: 164192, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196953

RESUMO

The study assessed the occurrence and distribution of microbial community and antibiotic resistance genes (ARGs) in food waste, anaerobic digestate, and paddy soil samples, and revealed the potential hosts of ARGs and factors influencing their distribution. A total of 24 bacterial phyla were identified, of which 16 were shared by all samples, with Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria accounting for 65.9-92.3 % of the total bacterial community. Firmicutes was the most abundant bacteria in food waste and digestate samples, accounting for 33-83 % of the total microbial community. However, in paddy soil samples with digestate, Proteobacteria had the highest relative abundance of 38-60 %. Further, 22 ARGs were detected in food waste and digestate samples, with multidrug, macrolide-lincosamide-streptogramin (MLS), bacitracin, aminoglycoside, tetracycline, vancomycin, sulfonamide, and rifamycin resistance genes being the most abundant and shared by all samples. The highest total relative abundance of ARGs in food waste, digestate, and soil without and with digestate was detected in samples from January 2020, May 2020, October 2019, and May 2020, respectively. The MLS, vancomycin, tetracycline, aminoglycoside, and sulfonamide resistance genes had higher relative abundance in food waste and anaerobic digestate samples, whereas multidrug, bacteriocin, quinolone, and rifampin resistance genes were more abundant in paddy soil samples. Redundancy analysis demonstrated that aminoglycoside, tetracycline, sulfonamide, and rifamycin resistance genes were positively correlated with total ammonia nitrogen and pH of food waste and digestate samples. Vancomycin, multidrug, bacitracin, and fosmidomycin resistance genes had positive correlations with potassium, moisture, and organic matter in soil samples. The co-occurrence of ARG subtypes with bacterial genera was investigated using network analysis. Actinobacteria, Proteobacteria, Bacteroidetes, and Acidobacteria were identified as potential hosts of multidrug resistance genes.


Assuntos
Microbiota , Eliminação de Resíduos , Rifamicinas , Antibacterianos/farmacologia , Alimentos , Genes Bacterianos , Vancomicina , Bacitracina , Solo , Anaerobiose , Bactérias , Resistência Microbiana a Medicamentos/genética , Aminoglicosídeos , Tetraciclinas
4.
Mitochondrial DNA B Resour ; 7(7): 1213-1215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814180

RESUMO

Elaeagnus pungens is an evergreen shrub with high medicinal values. In this study, the complete chloroplast (cp) genome of E. pungens was characterized. The chloroplast genome of E. pungens is 152,218 bp in length, consisting of two 25,876 bp inverted repeats, 18,231 bp small single copy region, and 82,235 bp large single copy region. The chloroplast genome contains 113 unique genes, including 79 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenomic analysis revealed that E. pungens and species from Elaeagnus formed a monophyletic clade sister to the clade consisting of species from Hippophae.

5.
J Adv Res ; 37: 43-60, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35499047

RESUMO

Introduction: Transcription factors (TFs) and cis-regulatory elements (CREs) control gene transcripts involved in various biological processes. We hypothesize that TFs and CREs can be effective molecular tools for De Novo regulation designs to engineer plants. Objectives: We selected two Arabidopsis TF types and two tobacco CRE types to design a De Novo regulation and evaluated its effectiveness in plant engineering. Methods: G-box and MYB recognition elements (MREs) were identified in four Nicotiana tabacum JAZs (NtJAZs) promoters. MRE-like and G-box like elements were identified in one nicotine pathway gene promoter. TF screening led to select Arabidopsis Production of Anthocyanin Pigment 1 (PAP1/MYB) and Transparent Testa 8 (TT8/bHLH). Two NtJAZ and two nicotine pathway gene promoters were cloned from commercial Narrow Leaf Madole (NL) and KY171 (KY) tobacco cultivars. Electrophoretic mobility shift assay (EMSA), cross-linked chromatin immunoprecipitation (ChIP), and dual-luciferase assays were performed to test the promoter binding and activation by PAP1 (P), TT8 (T), PAP1/TT8 together, and the PAP1/TT8/Transparent Testa Glabra 1 (TTG1) complex. A DNA cassette was designed and then synthesized for stacking and expressing PAP1 and TT8 together. Three years of field trials were performed by following industrial and GMO protocols. Gene expression and metabolic profiling were completed to characterize plant secondary metabolism. Results: PAP1, TT8, PAP1/TT8, and the PAP1/TT8/TTG1 complex bound to and activated NtJAZ promoters but did not bind to nicotine pathway gene promoters. The engineered red P + T plants significantly upregulated four NtJAZs but downregulated the tobacco alkaloid biosynthesis. Field trials showed significant reduction of five tobacco alkaloids and four carcinogenic tobacco specific nitrosamines in most or all cured leaves of engineered P + T and PAP1 genotypes. Conclusion: G-boxes, MREs, and two TF types are appropriate molecular tools for a De Novo regulation design to create a novel distant-pathway cross regulation for altering plant secondary metabolism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Nicotina/metabolismo , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/metabolismo , Metabolismo Secundário/genética
6.
Mol Plant ; 12(5): 704-714, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30851440

RESUMO

Artemisinin-based combination therapy (ACT) forms the first line of malaria treatment. However, the yield fluctuation of artemisinin has remained an unsolved problem in meeting the global demand for ACT. This problem is mainly caused by the glandular trichome (GT)-specific biosynthesis of artemisinin in all currently used Artemisia annua cultivars. Here, we report that non-GT cells of self-pollinated inbred A. annua plants can express the artemisinin biosynthetic pathway. Gene expression analysis demonstrated the transcription of six known pathway genes in GT-free leaves and calli of inbred A. annua plants. LC-qTOF-MS/MS analysis showed that these two types of GT-free materials produce artemisinin, artemisinic acid, and arteannuin B. Detailed IR-MALDESI image profiling revealed that these three metabolites and dihydroartemisinin are localized in non-GT cells of leaves of inbred A. annua plants. Moreover, we employed all the above approaches to examine artemisinin biosynthesis in the reported A. annua glandless (gl) mutant. The resulting data demonstrated that leaves of regenerated gl plantlets biosynthesize artemisinin. Collectively, these findings not only add new knowledge leading to a revision of the current dogma of artemisinin biosynthesis in A. annua but also may expedite innovation of novel metabolic engineering approaches for high and stable production of artemisinin in the future.


Assuntos
Artemisia annua/citologia , Artemisia annua/metabolismo , Artemisininas/metabolismo , Tricomas/metabolismo , Artemisia annua/genética , Artemisia annua/fisiologia , Engenharia Metabólica , Mutação , Polinização
7.
Metabolites ; 8(4)2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30261603

RESUMO

FLH 13-11 FL and FLH 17-66 FL are two interspecific hybrid varieties of muscadine grape resulting from the cross of Vitis munsoniana (Simpson) ex Munson and V. rotundifolia. However, profiles of flavan-3-ols and proanthocyanidins in these two hybrids have not been characterized. Herein, we report the use of high-performance liquid chromatography-quadrupole, time-of-flight, tandem mass spectrometry (HPLC-qTOF-MS/MS) to characterize these two groups of metabolites in berries. Ripe berries collected from two consecutive cropping years were used to extract metabolites. Metabolites were ionized using the negative mode. Collision-induced dissociation was performed to fragmentize ions to obtain feature fragment profiles. Based on standards, MS features, and fragments resulted from MS/MS, four flavan-3-ol aglycones, 18 gallated or glycosylated conjugates, and eight dimeric procyanidins, were annotated from berry extracts. Of these 30 metabolites, six are new methylated flavan-3-ol gallates. Furthermore, comparative profiling analysis showed obvious effects of each cultivar on the composition these 30 metabolites, indicating that genotypes control biosynthesis. In addition, cropping seasons altered profiles of these metabolites, showing effects of growing years on metabolic composition. These data are informative to enhance the application of the two cultivars in grape and wine industries in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...